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Symmetric and asymmetric solitons in a nonlocal nonlinear coupler
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We study effects of nonlocality of the cubic self-focusing nonlinearity on the stability and symmetry-breaking
bifurcation (SBB) of solitons in the model of a planar dual-core optical waveguide with nonlocal (thermal)
nonlinearity. In comparison with the well-known coupled systems with the local nonlinearity, the present setting
is affected by the competition of different spatial scales, viz, the coupling length and correlation radius of the
nonlocality

√
d . By means of numerical methods and variational approximation (VA, which is relevant for small

d), we find that, with the increase of the correlation radius, the SBB changes from subcritical into supercritical,
which makes all the asymmetric solitons stable. On the other hand, the nonlocality has little influence on the
stability of antisymmetric solitons. Analytical results for the SBB are also obtained (actually, for antisymmetric
“accessible solitons”) in the opposite limit of the ultra-nonlocal nonlinearity, using a coupler based on the
Snyder-Mitchell model. The results help to grasp the general picture of the symmetry breaking in nonlocal
couplers.
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I. INTRODUCTION

Dual-core systems, featuring intrinsic nonlinearity in paral-
lel cores coupled by linear tunneling of wave fields, find their
realizations in various physical settings. Well-known systems
of this type in optics are twin-core fibers [1–6] (see also an early
review [7]) and Bragg gratings [8], as well as double planar
waveguides with the second-harmonic-generating intrinsic
nonlinearity [9]. Similar settings for matter waves are rep-
resented by two-layer Bose-Einstein condensates [10–42]. A
fundamental physical effect in nonlinear symmetric dual-core
systems is the symmetry-breaking bifurcation (SBB), alias the
phase transition, which destabilizes symmetric modes and
gives rise to asymmetric ones. In nonlinear optics, the SBB
was studied in detail for continuous-wave (spatially uniform)
states [6] and solitons [8,13] in twin-core fibers [4,5,12–17]
and Bragg gratings [8] with the Kerr (cubic) nonlinearity,
as well as for solitons in double-core waveguides with the
quadratic [9] and cubic-quintic [18] nonlinearity. The SBB
was studied too for matter-wave solitons in two-layer BEC
settings [10,11].

The self-focusing cubic nonlinearity gives rise to the SBB of
the subcritical type (alias the phase transition of the first kind)
for solitons in the symmetric dual-core system. The bifurcation
of this type is characterized by originally unstable branches of
emerging asymmetric modes, which at first extend backward
(in the direction of weaker nonlinearity), and then turn forward,
retrieving the stability at the turning points [19]. In this case,
the system demonstrates a bistability and hysteresis in a limited
interval, characteristic to phase transitions of the first kind. If
the dual-core system is equipped with a periodic potential
(lattice) acting in the direction transversal to the propagation
coordinate, the character of the SBB changes to supercritical
above a certain threshold value of the lattice’s strength [11].
The supercritical bifurcation (alias the phase transition of the
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second kind) gives rise to stable branches of asymmetric modes
going in the forward direction [19]. The SBBs belong to this
type too in the twin-core Bragg grating, and in quadratically
nonlinear waveguides [8,9].

In addition to numerical analysis of symmetric, antisym-
metric, and asymmetric soliton modes in dual-core system
with the intrinsic cubic nonlinearity [13,15], the bifurcation
point was found in an exact analytical form [4], and the
emerging asymmetric solitons were studied in detail by means
of the variational approximation (VA) [5,12,14,17]. The latter
method is relevant for studies of solitons in many models
originating in nonlinear optics and related fields [20], while
the possibility to find the exact bifurcation point is a feature
specific to particular systems.

The nonlinear response in optical media may feature
spatial nonlocality, which means that the local change of the
refractive index induced by the light beam depends on the
distribution of the light intensity in a vicinity of a given point
[21,22]. The nonlocality arises when the nonlinear optical
response involves mechanisms such as heat diffusion, as
analyzed theoretically [23] and demonstrated experimentally
[24,25], molecular reorientation in liquid crystals [26,27],
atomic diffusion [28–30], etc. The fields of nanophotonics
and plasmonics also give rise to effective nonlocalities, due to
light-matter interactions occurring in these media on deeply
subwavelength scales [31,32].

Nonlocal nonlinearities are known in other physical media,
including plasmas [33] and self-gravitating photonic beams
[34]. Long-range interactions play an important role in dipolar
Bose-Einstein condensates (BECs) too [35], and nonlocal
gravity-like interactions can be induced in BEC by means
of laser illumination [36].

The nonlocality, which introduces a new spatial scale,
namely the correlation radius (denoted below as

√
d), may

drastically alter nonlinear excitations in optical systems, due
to the interplay of

√
d with other natural scales. In particular,

the nonlocality changes the character of interactions between
solitons [37], and it suppresses the beam’s collapse and
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transverse instabilities [38,39]. The nonlocality also accounts
for the formation of new types of soliton modes [40,41].
However, to the best of our knowledge, the influence of
nonlocality on the performance of optical couplers has not
been reported yet. In particular, new effects may be expected
due to the competition of

√
d with the coupling length, that

is, the interplay of nonlocal and local interactions. This is the
objective of the present work.

We consider the formation of solitons in a planar dual-core
waveguide, in which the nonlocal nonlinearity of the thermal
type acts in both cores, while the coupling between them
remains linear and local, as the heat diffusion does not transfer
energy across the gap separating the waveguides. Similar to
couplers with the local nonlinearity, the nonlocal model gives
rise to three types of solitons, viz., symmetric, antisymmetric,
and asymmetric ones. However, the nonlocality significantly
affects the symmetry-breaking phase transition (SBB) for
solitons, as well as stability of the emerging asymmetric
solitons, which are basic properties of nonlinear couplers:
at a critical value of the

√
d , the SBB changes its character

from sub- to supercritical. Taking into regard the potential that
nonlinear couplers have for various application to photonics,
such as all-optical switching [2,7], the use of the nonlocality for
the control of the soliton dynamics in these systems may help
to expand the range of the applications. While our analysis
is performed in terms of the thermal nonlinearity in optical
waveguides, the results may plausibly apply to other dual-core
physical systems which feature the nonlocal nonlinearity.

The paper is organized as follows. The model is formulated
in Sec. II, and analytical results are reported in Sec. III. These
results are obtained by means of the VA for solitons in the case
of weak nonlocality (small

√
d), and, on the other hand, the

SBB is also investigated (in fact, for antisymmetric solitons) in
the opposite limit of the ultra-nonlocal nonlinearity, in terms
of a coupled system for “accessible solitons” [the Snyder-
Mitchell (SM) model [21]]. In particular, the exact bifurcation
point is found for the SM system. The results for the small
correlation radius explicitly demonstrate the shift of the SBB
point to larger values of the soliton’s power, and the trend to
the transition of the subcritical bifurcation into the supercritical
one, while the findings reported for the ultra-nonlocal system
help to apprehend the general situation. Numerical results,
which provide the full description of solitons in the nonlocal
dual-core system for moderate values of the correlation radius,
are presented in Sec. IV. In the case of the weak nonlocality,
these results verify the analytical results produced by the VA.
The paper is concluded by Sec. V.

II. THE MODEL

The propagation of optical beams along axis z in the
planar dual-core waveguide with the intrinsic self-focusing
nonlinearity of the thermal type [22,23] is described by
the system of linearly coupled nonlinear Schrödinger (NLS)
equations for complex field amplitudes u, v in the two cores,
and respective local perturbations m,n of the refractive index:

iuz + 1
2uxx + mu + v = 0, (1a)

ivz + 1
2vxx + nv + u = 0, (1b)

m − dmxx = |u|2, (1c)

n − dnxx = |v|2, (1d)

where x is the transverse coordinate, the coupling constant
[the coefficient in front of terms v and u in Eqs. (1a) and
(1b), respectively] is scaled to be 1 (accordingly, the coupling
length is also ∼1), and d is the squared correlation radius of
the nonlocality. In fact, d controls the competition between the
length scales determined by the nonlocal and local interactions
in the system.

Stationary solutions to Eqs. (1) with propagation constant
b are looked for as

u(z,x) = eibzU (x), v(z,x) = eibzV (x), (2a)

m = m(x), n = n(x), (2b)

with real functions U (x) and V (x) obeying the following
equations:

−bU + 1
2U ′′ + mU + V = 0, (3a)

−bV + 1
2V ′′ + nV + U = 0, (3b)

m − dm′′ = U 2, (3c)

n − dn′′ = V 2. (3d)

Equations (1) conserve the total power,

P = Pu + Pv ≡
∫ ∞

−∞
|u|2dx +

∫ ∞

−∞
|v|2dx. (4)

Obviously, symmetric [U (x) = V (x)] and antisymmetric
[U (x) = −V (x)] modes have Pu = Pv , while asymmetric
ones can be characterized by parameter

� = Pv − Pu

Pv + Pu

, (5)

which takes values −1 < � < +1.
Parallel to Eqs. (1), it is relevant to consider the ultra-

nonlocal model, taken in the form of two linearly coupled SM
equations [21],

iuz + 1
2uxx − 1

2Pux
2u + v = 0, (6a)

ivz + 1
2vxx − 1

2Pvx
2v + u = 0, (6b)

where Pu,v are the powers defined as per Eq. (4). Actually,
Eqs. (6) correspond to the version of Eqs. (1c) and (1d)
with spatially averaged right-hand sides. To the best of our
knowledge, the SM coupler was not considered before, while
the extreme nonlocality postulated in the SM model per se
finds realizations and applications in diverse optical [43] and
optomechanical [44] settings.

III. ANALYTICAL RESULTS

A. The variational approximation for the weakly
nonlocal system

To apply the VA to the present system, we note that,
in the case of weak nonlocality (d � 1), Eqs. (3c) and
(3d) yield, in the first approximation, m = U 2 + d(U 2)′′, and
n = V 2 + d(V 2)′′ [45]. The substitution of this approximation
into Eqs. (3a) and (3b) leads to a system of two coupled
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equations with nonlinear-diffraction terms:

−bU + 1
2U ′′ + U 3 + dU (U 2)′′ + V = 0, (7a)

−bV + 1
2V ′′ + V 3 + dV (V 2)′′ + U = 0, (7b)

which may be derived from the Lagrangian with density

L = 1

4
[(U ′)2 + (V ′)2] + b

2
(U 2 + V 2) − 1

4
(U 4 + V 4)

+ d[U 2(U ′)2 + V 2(V ′)2] − UV. (8)

The VA ansatz for soliton solutions may be naturally chosen
as

{U (x),V (x)} = {A,B}sech(x/W ), (9)

where A and B are amplitudes of the two components, and W is
their common width. The substitution of the ansatz into density
(8) and evaluation of the integrals yields the corresponding
Lagrangian,

L ≡
∫ +∞

−∞
Ldx = A2 + B2

6W
+ b(A2 + B2)W

− 1

3
(A4 + B4)W + 4d(A4 + B4)

15W
− 2ABW. (10)

This Lagrangian can be more conveniently rewritten in terms
of the total power P , see Eq. (4), and power imbalance Q =
Pu − Pv ,

2(A2 + B2)W ≡ P, 2(A2 − B2)W ≡ Q, (11)

as follows:

2L = P

6W 2
+ bP − P 2 + Q2

12W

+ d

15

P 2 + Q2

W 3
− σ

√
P 2 − Q2, (12)

where σ = 1 for symmetric solitons and asymmetric ones
generated from them by the SBB, and σ = −1 for antisym-
metric solitons. The corresponding Euler-Lagrange equations
are ∂L/∂W = ∂L/∂Q = ∂L/∂P = 0, that is,

− P

W
+ P 2 + Q2

4
− 3d

5

P 2 + Q2

W 2
= 0, (13)

Q

(
− 1

6W
+ 2d

15W 3
+ σ√

P 2 − Q2

)
= 0, (14)

b = P

6W
− 1

6W 2
− 2dP

15W 3
+ σP√

P 2 − Q2
. (15)

Equation (15), which determines the propagation constant b, is
detached from Eqs. (13) and (14). Equation (14) yields either
Q = 0, which corresponds to symmetric and antisymmetric
solitons, or

− 1

6W
+ 2d

15W 3
+ 1√

P 2 − Q2
= 0 (16)

for asymmetric ones. Furthermore, the expansion of Eqs. (13)
and (15) for small d, that is, the weak nonlocality, yields

W ≈ 4

P
+ 3d

5
P, b ≈ 1

32
P 2 + σ − d

192
P 4, (17)

TABLE I. The comparison between the VA-predicted character-
istics of the symmetry-breaking bifurcation in the local and weakly
nonlocal systems, and their numerically found counterparts.

Parameter VA Numeric VA-Numer
VA (%)

Pth|d=0 4.6953 4.5484 3.13
Pbif|d=0 4.8989 4.6188 5.72
d(Pth)
d(d) |d=0 12.2681 13.8270 −12.71

d(Pbif )
d(d) |d=0 11.7575 10.8666 7.58

which predicts that, naturally, the nonlocality makes the soliton
wider, for given total power P . This is confirmed by the
numerical solutions, as shown below.

The most essential point is to find the critical power Pbif , at
which the asymmetric solitons bifurcate from the symmetric
ones. This value is determined by a system of equations (13)
and (16), in which one should set Q = 0. Furthermore, using
the assumption of the weak nonlocality, that is, small d, the
ensuing solution for Pbif can be expanded up to order d, which
yields

Pbif = 2
√

6 + (24
√

6/5)d. (18)

Note that, at d = 0, Eq. (18) gives Pbif(d = 0) = 2
√

6 [17],
which may be compared to the known exact result [4],
(Pbif)exact = 8/

√
3, the relative error being 0.057.

The VA predicts, as per Eq. (18), the increase of the soliton’s
power at the bifurcation point due to the weak nonlocality. To
compare the prediction with the numerical findings, we take
the slope of the Pbif (d) dependence at d = 0, for which Eq. (18)
yields [

d(Pbif)

d(d)

∣∣∣∣
d=0

]
variational

= 24
√

6/5 ≈ 11.758. (19)

On the other hand, the same slope obtained from the numerical
solution (see the next section) is[

d(Pbif)

d(d)

∣∣∣∣
d=0

]
numerical

≈ 10.867, (20)

the relative error of the VA prediction being 0.075 (see
Table I).

It is also possible to find another critical power Pth,
which corresponds to the turning point (i.e., the stabilization
threshold for asymmetric solitons) in the dependence of the
asymmetry parameter � ≡ Q/P [see Eq. (5)] on total power
P . To this end, one should obtain a dependence between �

and P , eliminating W from Eqs. (13) and (16), and identifying
Pth from condition

dP

d�
= 0. (21)

In the limit of d = 0, the result produced by the VA is known
[17]:

(Pth)d=0 = 3 · 61/4 ≈ 4. 695, (22)

the corresponding value of the asymmetry at the critical point
being �th = 1/

√
3. On the other hand, the numerically found

threshold power at d = 0 is

[(Pth)d=0]num 	 4.548, (23)
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hence the relative error produced by the comparison of
Eqs. (22) and (23) is 0.031 (see Table I).

Furthermore, the expansion of Eqs. (13), (16), and (21) for
small d yields the following prediction for the slope of curve
Pth(d) at d = 0:[

d(Pth)

d(d)

∣∣∣∣
d=0

]
variational

= 16

5
· 63/4 ≈ 12.268, (24)

while the numerically found counterpart of this value is[
d(Pth)

d(d)

∣∣∣∣
d=0

]
num

	 13.827, (25)

hence the respective relative error is 0.127 (see Table I).
Finally, we note that the relation

d(Pth)

d(d)

∣∣∣∣
d=0

>
d(Pbif)

d(d)
|d=0, (26)

see Eqs. (24) and (19), suggests that Pth and Pbif will
eventually merge into a single critical or threshold value, which
implies the transition from the subcritical bifurcation to the
supercritical one, as confirmed by numerical results displayed
in Sec. IV.

B. The coupler for “accessible solitons”
(the Snyder-Mitchell model)

In the opposite case of the ultra-nonlocal nonlinearity,
substitution (2a) transforms coupled SM Eqs. (6) and (4) into
their stationary versions:

−bU + 1

2
U ′′ − 1

2
Pux

2U + V = 0, (27a)

−bV + 1

2
V ′′ − 1

2
Pvx

2V + U = 0, (27b)

Pu =
∫ ∞

−∞
U 2(x)dx, Pv =

∫ ∞

−∞
V 2(x)dx. (28)

In spite of the apparently simple form of Eqs. (27) and
(28), it is not possible to find exact solutions for asymmetric
solitons. A solution can be obtained by means of the WKB
approximation in the limit case of the strong asymmetry,
Pv � Pu. In this case, the U component is tantamount to the
ground-state wave function of the harmonic oscillator (HO),
with the corresponding HO length Lu = P

−1/4
u , eigenvalue of

the propagation constant b = −√
Pu/2, and amplitude

U (x = 0) = π−1/4P 5/8
u , (29)

while the weak V component develops a broad shape,
with a small amplitude V (x = 0) ≈ −√

2/πP
3/4
v P

−1/8
u , and

large width Lv ≈ 2
√√

Pu/Pv . The wave function of the V

component can be written in a relatively simple explicit WKB
form in the “resonant” case,

Pv = Pu/[2(2N + 1)]2, (30)

with large integer N , when the (2N )th energy eigenvalue in
the shallow HO potential (assuming that N = 0 corresponds
to the ground state) in the V component is matched to the

ground-state eigenvalue of the HO in the U component:

V (x) = −
√

2

π

(
P 3

v√
Pu − Pvx2

)1/4

cos

{
1

2

√
Pv

×
[√

Pu

Pv

arcsin

(√
Pv√
Pu

x

)
+ x

√√
Pu

Pv

− x2

]}
,

(31)

at x2 <
√

Pu/Pv , and V (x) = 0 at x2 >
√

Pu/Pv [if resonance
condition (30) does not hold, the WKB expression (31) needs
a correction around the edge points, x2 = √

Pu/Pv ].
It follows from Eq. (27b) taken at the inflexion point

(V ′′ = 0) closest to x = 0 that the strongly asymmetric mode
has opposite signs of U (x = 0) and V (x = 0) (as written in
the above formulas), that is, this asymmetric state develops
from the antisymmetric one. The respective point of the
antisymmetry-breaking bifurcation can be found in an exact
form. To this end, a solution to Eqs. (27) near the bifurcation
point is looked for as

{U (x),V (x)} = ±U0 exp

(
− 1

2

√
P

2
x2

)
+ δU (x), (32)

where the propagation constant and amplitude of the lowest
unperturbed antisymmetric mode, with total power P (in both
components), are

b = −1 − (1/2)
√

P/2, (33)

U0 = π−1/4(P/2)5/8 (34)

[cf. Eq. (29)], and an infinitesimal antisymmetry-breaking
perturbation δU (x) obeys the equation following from the
substitution of expression (32) into Eqs. (27) and (28) and

FIG. 1. (Color online) Total power P versus the soliton’s propa-
gation constant b at different fixed values of the squared nonlocality
correlation radius d for symmetric solitons in the model based on Eqs.
(1). The inset shows a typical soliton profile. For the antisymmetric
solitons, b is shifted by �b = −2. All quantities are plotted in
arbitrary units.
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subsequent linearization:

(1 − b)δU + 1

2
δU ′′ − 1

4
Px2δU

= U0(δP )x2 exp

(
− 1

2

√
P

2
x2

)
, (35a)

δP ≡ U0

∫ +∞

−∞
exp

(
− 1

2

√
P

2
x2

)
δU (x)dx. (35b)

A relevant solution to inhomogeneous equation (35a) can
be found as

δU =
(

δ0 + 1

2
δ2x

2

)
exp

(
−1

2

√
P

2
x2

)
, (36a)

δ0 = U0δP

3
√

P/2 − 4
, δ2 = − 4U0δP

3
√

P/2 − 4
. (36b)

Finally, substituting expressions (36) into Eq. (35b) and can-
celing δP as a common factor, the self-consistency condition
yields a simple exact result for the total power at which the

increase of the spontaneous breaking of the antisymmetry
occurs: P

(antisymm)
cr = 8.

IV. NUMERICAL RESULTS

Numerical solution of Eqs. (3) was performed by means of
the standard relaxation method. As predicted by the VA, three
soliton families, symmetric, asymmetric, and antisymmetric
ones, persist in the nonlocal system. The numerically found
relation between the total power P and propagation constant b

for symmetric and antisymmetric solutions is shown in Fig. 1.
It is seen that b monotonically grows with P at a fixed value of
the nonlocality range

√
d [which implies that the solitons may

be stable in terms of the Vakhitov-Kolokolov (VK) criterion
[46]], and b decreases with d at fixed P . Both these properties
are correctly predicted by the VA [see Eq. (17)]. The fact that all
the curves originate at P = 0 from the same point is obvious,
as it immediately follows from Eqs. (3) that limP→0 b(P ) =
σ ≡ sgn(UV ).

Proceeding to numerically found asymmetric solitons, in
Fig. 2(a) we plot the respective P (b) curves for for different
fixed values of d. As in the local system, asymmetric modes
appear through the SBB when the total power exceeds the

FIG. 2. (Color online) (a) Total power P versus propagation constant b for asymmetric solitons at different values of the squared nonlocality
radius d . The inset shows a typical soliton profile. (b) The dependence on nonlocality d of the total power Pbif at which the symmetry-breaking
bifurcation gives rise to asymmetric solitons, and of the threshold power Pth at which the pair of stable and unstable asymmetric solitons
emerge subcritically. (c) The bifurcation diagram accounting for the creation of the asymmetric solitons from the symmetric ones. In (a) and
(c), dashed curves depict unstable portions of the asymmetric-soliton families [the border between stable and unstable (dashed) parts of the
symmetric-soliton family in Fig. 2(c) corresponds to d = 0.01]. All quantities are plotted in arbitrary units.
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threshold value Pth. Note that the threshold, as well as the
value of the total power at the bifurcation point, P = Pbif ,
significantly grow with d [see Fig. 2(b)], in accordance with the
prediction of the VA given by Eqs. (22) and (19). Furthermore,
the P (b) curves change their shape with the growth of the
nonlocality radius: At small d, the slope dP/db is initially
negative (which definitely implies the instability, according
to the VK criterion [46]), going over to dP/db > 0 with the
further increase of b. With the increase of d, the segment with
the negative slope shrinks, and disappears at d > 0.05.

The change in the shape of the P (b) characteristics is
directly related to the switch of the SBB from sub- to
the supercritical type (in other words, the switch of the
symmetry-breaking phase transition from the first to second
kind) [19], as shown in Fig. 2(c), where P = Pth determines the
turning points of the �(P ) curves, and their unstable portions
with d�/dP < 0 precisely correspond to the segments with
dP/db < 0 in Fig. 2(b), both being confined to Pth < P <

Pbif . Accordingly, the type of the SBB is subcritical, with
Pth < Pbif at d < 0.05, and supercritical, with Pth ≡ Pbif , at
d > 0.05. The merger of Pth and Pbif into the single value
at d > 0.05 is clearly observed in Fig. 2(b). Recall that, as
mentioned above, the trend to the merger of the two critical
powers was predicted by the VA, see Eq. (26).

It is relevant to compare this result with the transition
from the subcritical SBB for solitons into the supercritical
bifurcation under the action of the periodic potential [11].
Although the models are very different (the one considered in
Ref. [11] is local), a common feature is the introduction of
a specific spatial scale—the nonlocality range in the present
model,

√
d, or the lattice period in the local model—which is

a factor accounting for the change of the character of the SBB.
The stability of the solitons was tested by means of

systematic simulations of Eqs. (1), starting with perturbed ini-
tial conditions u(x,z = 0) = U (x)[1 + ρ(x)], v(x,z = 0) =
V (x)[1 + ρ(x)], where U (x),V (x) is a stationary solution,
and ρ(x) is a small-amplitude random function. As expected,
it has been found that the solid portions of the curves in
Figs. 2(a) and 2(c), with dP/db > 0 and d�/dP > 0, carry
stable solitons, while the dashed segments, with dP/db < 0
and d�/dP < 0, represent unstable solutions. Thus, the
increase of the nonlocality radius,

√
d , gradually eliminates

the instability region for the asymmetric solitons, making them
completely stable in the case when the SBB is supercritical,
that is, at d > 0.05.

It is relevant to explore the evolution of the two species
of unstable solitons in the dual-core system, viz., asymmetric
ones belonging to the segments of the �(P ) curves with the
negative slope [i.e., � < �(Pth), that exist at d < 0.05], which
are represented, for example, by point B in Fig. 2(c), and
symmetric solitons with P > Pbif , sampled by point D in Fig.
2(c). Figure 3(a) displays the result for the unstable asymmetric
soliton, which demonstrates long-lived oscillations, initiated
by the instability, and eventual relaxation into a stable soliton
with almost the same power but higher asymmetry � >

�(Pth), which belongs to the stable branch of asymmetric
modes in Fig. 2(c). Furthermore, Fig. 3(b) demonstrates that
the instability of the symmetric soliton leads to its spontaneous
rearrangement into an asymmetric one, with nearly the same
total power.

FIG. 3. (Color online) (a) and (b) The evolution of perturbed
unstable solitons corresponding, respectively, to points B and D
marked in Fig. 2(c) (weakly asymmetric and symmetric solitons)
is shown in terms of amplitudes of both components, and asymmetry
measure (5). Both examples pertain to d = 0.01. All quantities are
plotted in arbitrary units.

We have also studied the stability and evolution of antisym-
metric solitons for different strengths of the nonlocality in the
model based on Eqs. (1) (the stability of the antisymmetric
solitons in the model of the coupler with the local nonlinearity
was studied, in a numerical form, in Ref. [15]). In contrast
to the asymmetric solitons, where the nonlocality leads to the
transition from the subcritical SBB to the supercritical bifurca-
tion, and thus enhances the stability of the asymmetric solitons,
it has been found that the stability of the antisymmetric ones is
weakly affected by the nonlocality: the stability region slightly
expands under the action of the nonlocality, without dramatic
changes.

V. CONCLUSION

We have introduced the nonlocal generalizations of the
standard model of the nonlinear directional coupler. The
system can be built, in particular, as a dual-core optical
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waveguide made of a material with thermal nonlinearity. By
means of the VA (variational approximation) and systematic
numerical analysis, we have found that the relatively weak
nonlocality shifts the SBB (symmetry-breaking bifurcation)
of solitons to larger values of the total power, and eventually
changes the character of the SBB from subcritical to the
supercritical (i.e., the corresponding phase transition of the
first kind goes over into the transition of the second kind).
Thus, the nonlocality of the cubic nonlinearity enhances the
stability for the asymmetric solitons, and eventually leads to
their stabilization in the whole existence domain, while only
slightly affecting the stability of antisymmetric solitons. For
the consideration of the opposite case of the ultra-nonlocal
nonlinearity, the coupler based on the SM (Snyder-Mitchell)
model was introduced. In that case, the phase transition
leads to the spontaneous breaking of the antisymmetry of
the corresponding two-component “accessible solitons.” The
exact transition point was found, and the strongly asymmetric
states were found by means of the WKB approximation.

The analysis reported in this paper can be extended in
other directions. In particular, as concerns nonlocal dual-
core systems in other physical contexts, it may be quite
interesting to study the SBB and asymmetric solitons in
the case when the nonlocal interactions act between the
cores, an important example being a two-layer dipolar BEC
[42]. The symmetry-breaking point can be easily found for
the respectively modified SM coupler model. A challenging
extension is to construct two-dimensional solitons in dual-core
systems, where they may be stabilized against the collapse by
the nonlocality of the nonlinearity.
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16, 783 (1973); L. Bergé, Phys. Rep. 303, 259 (1998); E. A.
Kuznetsov and F. Dias, ibid. 507, 43 (2011).

053839-8

http://dx.doi.org/10.1070/QE1998v028n02ABEH001183
http://dx.doi.org/10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1103/PhysRevLett.84.5687
http://dx.doi.org/10.1103/PhysRevLett.84.5687
http://dx.doi.org/10.1103/PhysRevA.63.031603
http://dx.doi.org/10.1103/PhysRevA.76.053604
http://dx.doi.org/10.1103/PhysRevA.76.053604
http://dx.doi.org/10.1364/OL.27.001460
http://dx.doi.org/10.1364/OL.27.001460
http://dx.doi.org/10.1103/PhysRevE.62.4300
http://dx.doi.org/10.1103/PhysRevE.62.4300
http://dx.doi.org/10.1103/PhysRevE.66.046619
http://dx.doi.org/10.1103/PhysRevE.66.046619
http://dx.doi.org/10.1364/OL.35.000628
http://dx.doi.org/10.1364/OL.35.000628
http://dx.doi.org/10.1364/OL.34.000584
http://dx.doi.org/10.1103/PhysRevA.76.013606
http://dx.doi.org/10.1103/PhysRevA.76.013606
http://dx.doi.org/10.1016/j.optcom.2007.05.012
http://dx.doi.org/10.1016/j.physleta.2007.07.033
http://dx.doi.org/10.1016/j.physleta.2007.07.033
http://dx.doi.org/10.1103/PhysRevA.77.043826
http://dx.doi.org/10.1103/PhysRevLett.102.203903
http://dx.doi.org/10.1103/PhysRevLett.102.203903
http://dx.doi.org/10.1007/s11082-009-9351-9
http://dx.doi.org/10.1007/s11082-009-9351-9
http://dx.doi.org/10.1016/j.optcom.2010.08.004
http://dx.doi.org/10.1103/PhysRevLett.108.093903
http://dx.doi.org/10.1103/PhysRevLett.108.093903
http://dx.doi.org/10.1103/PhysRevE.63.016610
http://dx.doi.org/10.1103/PhysRevE.63.016610
http://dx.doi.org/10.1007/BF01031343
http://dx.doi.org/10.1007/BF01031343
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1016/j.physrep.2011.06.002

